[1] S. Patton, D. Doss, and W. Yurcik, “Open source versus commercial firewalls: Functional comparison,” in Conference on Local Computer Networks, 2000, pp. 223–224, doi: 10.1109/LCN.2000.891032.
[2] M. Arunwan, T. Laong, and K. Atthayuwat, “Defensive performance comparison of firewall systems,” in 2016 Management and Innovation Technology International Conference, MITiCON 2016, 2017, pp. MIT221–MIT224, doi: 10.1109/MITICON.2016.8025212.
[3] D. Kumar and M. Gupta, “Implementation of Firewall & Intrusion Detection System Using pfSense To Enhance Network Security,” in International Journal of Electrical Electronics & Computer Science Engineering, 2018, pp. 131–137.
[4] H. F. El-Sofany, S. A. El-Seoud, and I. A. T. F. Taj-Eddin, “A case study of the impact of denial of service attacks in cloud applications,” J. Commun., vol. 14, no. 2, pp. 153–158, 2019, doi: 10.12720/jcm.14.2.153-158.
[5] G. A. Jaafar, S. M. Abdullah, and S. Ismail, “Review of Recent Detection Methods for HTTP DDoS Attack,” J. Comput. Networks Commun., vol. 2019, p. 10, 2019, doi: 10.1155/2019/1283472.
[6] H. Beitollahi and G. Deconinck, “Analyzing well-known countermeasures against distributed denial of service attacks,” Comput. Commun., vol. 35, no. 11, pp. 1312–1332, 2012, doi: 10.1016/j.comcom.2012.04.008.
[7] K. Subramanian, P. Gunasekaran, and M. Selvaraj, “Two layer defending mechanism against DDoS attacks,” Int. Arab J. Inf. Technol., vol. 12, no. 4, pp. 317–324, 2015.
[8] X. Yuan, C. Li, and X. Li, “DeepDefense: Identifying DDoS Attack via Deep Learning,” in 2017 IEEE International Conference on Smart Computing, SMARTCOMP 2017, 2017, pp. 1–8, doi: 10.1109/SMARTCOMP.2017.7946998.
[9] K. Singh, P. Singh, and K. Kumar, “Application layer HTTP-GET flood DDoS attacks: Research landscape and challenges,” Comput. Secur., vol. 65, no. October, pp. 344–372, 2017, doi: 10.1016/j.cose.2016.10.005.
[10] T. Ni, X. Gu, H. Wang, and Y. Li, “Real-time detection of application-layer DDoS attack using time series analysis,” J. Control Sci. Eng., vol. 2013, 2013, doi: 10.1155/2013/821315.
[11] J. Wang, M. Zhang, X. Yang, K. Long, and J. Xu, “HTTP-sCAN: Detecting HTTP-flooding attack by modeling multi-features of web browsing behavior from noisy web-logs,” China Commun., vol. 12, no. 2, pp. 118–128, 2015, doi: 10.1109/CC.2015.7084407.
[12] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks,” IEEE Commun. Surv. Tutorials, vol. 15, no. 4, pp. 2046–2069, 2013, doi: 10.1109/SURV.2013.031413.00127.
[13] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in DDoS Attacks: Trends and Challenges,” IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2242–2270, 2015, doi: 10.1109/COMST.2015.2457491.
[14] I. Sreeram and V. P. K. Vuppala, “HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm,” Appl. Comput. Informatics, vol. 15, no. 1, pp. 59–66, 2019, doi: 10.1016/j.aci.2017.10.003.
[15] A. Rai and R. K. Challa, “Survey on recent DDoS mitigation techniques and comparative analysis,” in Proceedings - 2016 2nd International Conference on Computational Intelligence and Communication Technology, CICT 2016, 2016, pp. 96–101, doi: 10.1109/CICT.2016.27.
[16] S. Suroto, “A Review of Defense Against Slow HTTP Attack,” JOIV Int. J. Informatics Vis., vol. 1, no. 4, p. 127, 2017, doi: 10.30630/joiv.1.4.51.
[17] J. Tiso and D. Teare, Designing Cisco Network Service Architectures (ARCH): Foundation Learning Guide, Third. Indianapolis: ciscopress.com, 2011.